Total embedding distributions of Ringel ladders

نویسندگان

  • Yichao Chen
  • Lu Ou
  • Qian Zou
چکیده

The total embedding distributions of a graph is consisted of the orientable embeddings and nonorientable embeddings and have been know for few classes of graphs. The genus distribution of Ringel ladders is determined in [Discrete Mathematics 216 (2000) 235-252] by E.H. Tesar. In this paper, the explicit formula for non-orientable embeddings of Ringel ladders is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Embedding Distributions of Circular Ladders

where ai is the number of embeddings, for i = 0, 1, . . ., into the orientable surface Si, and bj is the number of embeddings, for j = 1, 2, . . ., into the non-orientable surface Nj . The sequence {ai(G)|i ≥ 0} ⋃ {bj(G)|j ≥ 1} is called the total embedding distribution of the graph G; it is known for relatively few classes of graphs, compared to the genus distribution {ai(G)|i ≥ 0}. The circul...

متن کامل

Genus distributions of star-ladders

Star-ladder graphs were introduced by Gross in his development of a quadratic-time algorithm for the genus distribution of a cubic outerplanar graph. This paper derives a formula for the genus distribution of star-ladder graphs, using Mohar’s overlap matrix and Chebyshev polynomials. Newly developed methods have led to a number of recent papers that derive genus distributions and total embeddin...

متن کامل

Log-concavity of the genus polynomials of Ringel Ladders

A Ringel ladder can be formed by a self-bar-amalgamation operation on a symmetric ladder, that is, by joining the root vertices on its end-rungs. The present authors have previously derived criteria under which linear chains of copies of one or more graphs have log-concave genus polynomials. Herein we establish Ringel ladders as the first significant non-linear infinite family of graphs known t...

متن کامل

Embedding Distributions and Chebyshev Polynomials

The history of genus distributions began with J. Gross et al. in 1980s. Since then, a lot of study has given to this parameter, and the explicit formulas are obtained for various kinds of graphs. In this paper, we find a new usage of Chebyshev polynomials in the study of genus distribution, using the overlap matrix, we obtain homogeneous recurrence relation for rank distribution polynomial, whi...

متن کامل

Log-concavity of genus distributions of ring-like families of graphs

We calculate genus distribution formulas for several families of ring-like graphs and prove that they are log-concave. The graphs in each of our ring-like families are obtained by applying the self-bar-amalgamation operation to the graphs in a linear family (linear in the sense of Stahl). That is, we join the two root-vertices of each graph in the linear family. Although log-concavity has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011